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ABSTRACT 

Adiabatic blastwaves, which have a totsl energy - . . injected from the center, 
E o( tq, and propagate through a preshock medmm with a density, PE cc T+‘, 
are described by a family of similarity solutions. Previous work has shown that adi- 
abatic blastwaves with increasing or constant postshock entropy behind the shock 
front are susceptible to an oscillatory instability, caused by the difference between 
the nature of the forces on the two sides of the dense shell behind the shock front. 
This instability sets in if the dense postshock layer is sufficiently thin. In this pa- 
per, we consider the stability of adiabatic blastwaves with a decreasing postshock 
entropy. Such blastwaves, if they are decelerating, always have a region behind the 
shock front which is subject to convection. Some accelerating blastwaves also have 
such region, depending on the values of (I, w, and 7 where 7 is the adiabatic index. 
However, since the shock interface stabilizes dynamically induced perturbations, 
blastwaves become convectively unstable only if the convective zone is localized 
around the origin or a contact discontinuity far from the shock front. On the other 
hand, the contact discontinuity of accelerating blastwaves is subject to a strong 
Rayleigh-Taylor instability. The frequency spectra of the nonradial, normal modes 
of adiabatic blastwaves have been calculated. The results have been applied to the 
shocks propagating through supernovae envelopes. We show that the metal/He and 
He/H interfaces are strongly unstable against the Rayleigh-Taylor instability. This 
instability will induce mixing in supernovae envelopes. In addition we discuss the 
implications of this work for the evolution of planetary nebulae. 
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I. INTRODUCTION 

An understanding of the propagation of shock waves in astrophysical systems 
can be essential for understanding the history and present state of such systems. 
A blast shock wave (or a blastwave, in short) is generated, by an object releasing 
energy, whether impulsively, as in a supernova explosion, or continuously, as in a 
stellar or galactic wind. The resulting blastwave can be described by a Sedov-Taylor 
type similarity solution, provided the total injected energy E is a power law in time, 

and the density of the ambient medium is a power law in radius, 

--w 
(1.2) 

(Sedov 1946, 1959; Taylor 1950; Ostriker and McKee 1988). The similarity for- 
malism demands that the flow quantities depend only on a single dimensionless 
parameter involving length and time scales. Such a similarity formalism provides 
an excellent approximation to realistic systems, when it is applied in the region 
far from the spatial and temporal boundaries and when it contains an adequate 
description of physics. 

The stability of blastwaves has been alongstanding problem to physicists and as- 
trophysicists alike. Erpenbeck (1962) studied the stability of a steady plane-parallel 
shock dividing space into two homogeneous regions and showed that it is not ex- 
ponentially unstable against a rippling of the shock front. Subsequently, several 
workers, including Bertschinger (1986), demonstrated that the shock interface is 
stable against dynamically induced perturbations because of the stabilizing tangen- 
tial velocity in the postshock flow, produced by the obliquity of the rippled shock. 
However, the contact discontinuity between the ejected material and the swept-up 
gas resembles the classical illustration of a Rayleigh-Taylor instability in acceler- 
ating blastwaves. In fact, Bernstein and Book (1978) showed that this contact 
discontinuity in iaentropic blastwaves is indeed unstable. 

Ryu and Vishniac (1987, 1988) analyzed the stability of adiabatic blastwaves 
propagating through a uniform medium (w = 0) and derived the eigenvalues and 
eigenfunctions for the nonradial, normal modes. Such blastwaves are susceptible 
to an oscillatory instability, due to the difference between the nature of forces on 
the two sides of the dense shell behind the shock front. They become subject to 
growing oscillations if the shell is sufficiently thin. The physical mechanism for 
this instability was first suggested by Vishniac (1983) for an isothermal shell with 
infinitesimal thickness and later confirmed by Bertschinger (1986). In a subsequent 
paper, Vishniac and Ryu (1989) gave an analytical derivation of the eigenmodes of 
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isothermal blastwaves propagating through a uniform medium under the approxi- 
mation that the evolutionary time scale of the perturbations is much shorter than 
the evolutionary time scale of the shock itself. From the above work, it can be seen 
that adiabatic blastwaves with increasing or constant postshock entropy from the 
shock front. or with 

wl 
6 - 2q 

27 + (7 - l)n 

where y is the adiabatic index (see §II), are overstable for y sufficiently close to 
1. For a realistic shock this condition is usually equivalent to requiring that the 
postshock gas cool efficiently. In the absence of radiative cooling such shocks wilI 
not be subject to these growing oscillations. 

However, as pointed out by Bandiera (1984), some adiabatic blastwaves have a 
region behind the shock front which is subject to convection and may be convec- 
tively unstable. The stability of such blastwaves was studied by Chevalier (1976) 
and Bandiera (1984). Chevalier used the local Rayleigh-Taylor criterion to deter- 
mine the existence of an instability and the dispersion relation for an incompressible 
fluid under constant gravitational acceleration bounded by rigid boundaries to es- 
timate the growth rate of the perturbations. On the other hand, Bar&era used the 
local Schwarzschild criterion and a dispersion relation based on a local stability anal- 
ysis. Unfortunately, in this case, convection is driven dynamically, not thermally, 
and such a dynamically driven instability is generally a global instability, not a local 
instability. The glo6oZ stability analysis should include the overall dynamics of the 
blastwaves and the correct boundary conditions, in addition to the local structure of 
the blastwaves. Therefore the local satisfaction of the convection criterion does not 
necessarily guarantee the etistence of a global convective instability, and estimates 
of the growth rate of perturbations based on a local stability analysis may be mis- 
leading. Here, we call this instability a convective instability, and reserve the name 
Rayleigh-Taylor instability to indicate the instability in the contact discontinuity 
(see $11). 

In this paper, we consider the stability of adiabatic blastwaves with decreasing 
entropy behind the shock front, or 

W> 
6 - 2q 

27 + (7 - l)q’ 
(1.4) 

They are subject to convective or Rayleigh-Taylor instability depending on the 
values of q, w, and 7. This problem is of more than purely formal interest. Realistic 
astrophysical shocks often occur in the presence of density gradients and may involve 
the injection of energy over time long compared to the evolutionary time scale of 
the blastwave. Supernova explosions, where the shock propagates outward through 
the envelope of a massive star, constitute an example of the former. The ejection of 
planetary nebulae in the later stages of stellar evolution may be an example of both 
significant density gradients and continuous energy injection. In this case, earlier 
stellar winds may lead to a significant, but rapidly decreasing, density enhancement 
around the star. Moreover, the planetary nebula itself is probably driven by a 
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continuous, high-intensity stellar wind. Under these circumstances, instabilities 
may result in global inhomogeneities in the blastwaves at late times. An equally 
important effect is the tendency of these instabilities to drive mixing in otherwise 
chemically distinct layers in the postshock gas. 

In this paper we have calculated the frequency spectra of the nonradial, normal 
modes of adiabatic blastwaves using a method similar to that used in Ryu and 
Vishniac (1987, 1988). In 511 of this paper we have reviewed the Sedov-Taylor type 
similarity solutions for adiabatic blastwaves. In $111 the perturbation equations 
are derived, and in §IV the boundary conditions at the shock front and at the 
contact discontinuity or the origin are discussed. In §V the numerical scheme used 
to solve the perturbation equations is described and the results are discussed. In §VI 
the results are applied to the shock propagating through the supernova envelopes. 
Finally, in §VII we discuss the application of our results to the evolution of planetary 
nebulae. 

II. BLASTWAVES 

We treat the postshock fluid as a one-component ideal fluid with an adiabatic 
index 7. The flow is governed by the usual conservation equations: 

The energy conservation equation can be replaced by the entropy conservation 
equation 

(;-a++0 (2.4) 

except at the shock discontinuity. The shock is assumed to be very strong, so that 
the fluid density, velocity, and pressure just behind the shock front are expressed in 
terms of the preshock density PE and the shock velocity V, relative to the preshock 
medium 

-i+1 
Pa = PE-, 

-r--l 
(2.5) 

(2.6) 
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by the shock jump conditions. The flow pattern is entirely determined by two 
quantities, PE and E, and from them a unique dimensionless parameter of similarity 
flow can be formed, 

(= T (sy 

= POT% 
(4 

115 33 
J% 

TYt- 5 . 

The radius and velocity of the shock front change as 

(2.8) 

(2.9) 

-a 
v, cc t 5-u ) (2.10) 

and the fluid density, velocity, and pressure just behind the shock front change as 

(2.11) 

-m 
v* 0: t s--w , (2.12) 

W--zq+E 
p, cc t s--u . (2.13) 

It is convenient to introduce the dimensionless fluid density, velocity, and pres- 
sure, and the dimensionless radial coordinate for the flow throughout the region 
behind the shock front as defined by 

ij,’ 
us1 

jj=P, 
P8 

i: E L. 
Tb 

Then, the conservation equations (2.1), (2.2), and (2.4) become 

(2.15) 

(2.16) 

(2.17) 

(2.18) 



Blastwaves with w < 5 admit a similarity solution where the radius and velocity of 
the shock front remain finite, even though the total mass and energy contained in 
a blastwave is infinite if w 2 3. 
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For q = 0 the above equations can be integrated analytically. The integration is 
given in Sedov (1959), and also in Bandiera (1984) in a compact form. Blastwaves 
with q = 0 are filled, i.e. the postshock flow extends to the origin, provided 
w < (7 - y)/(y + 1). In this case, near the origin, the density becomes 

(2.21) 

and the pressure approaches a constant value with 

d? -zt.yc 

ZET 7- 
(2.22) 

On the other hand, blastwaves with q = 0 are hollow, i.e. the postshock flow ends 
at a contact discontinuity, provided w > (7 - y)/(r + 1). In this case, near the 
contact discontinuity, the density and pressure become 

a-(T+l)w 
ij o( (i’ - q 37--o+* ) 

1-u 
?, o( (i’ - ;,)*. 

(2.23) 

(2.24) 

Here, ?, is the position of the contact discontinuity. The special case with w = 
(7 - 7)/(7 + 1) is sometimes referred as the Primakoff blastwave, and the postshock 
fluid quantities are expressed by a simple power law in radius: 

3 o( F, (2.25) 

@oci.3. (2.26) 

The blastwaves with q = 0 can be classified into 7 characteristic types depending 
on the values of w and 7, and the ranges of w for each type are given in Bandiera 
(1984). The plots of the postshock flow for each characteristic type of the blastwaves 
with 7 = 4/3 are shown in Figure 2 of Chevalier (1976). 

For Q > 0 equations (2.18), (2.19), and (2.20) can not be integrated analytically, 
but the behavior of the postshock flow can be induced from the equations. All the 
blastwaves with q > 0 are hollow. Near the contact discontinuity, 

F - Fe dji 

-T-di-o( 

6-2q+wq 

2+q 
-7w for w 5 3 

i:-Fcdji 
(2.27) 

r,g<o for w > 3. 

The density converges to zero or a constant if 

wl 
6 - 2q 

27 + (7 - l)q’ 
(2.26) 
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and diverges otherwise. Also near the contact discontinuity, 

(2.29) 

and the pressure approaches a constant value if w < 3 and diverges otherwise. On 
the other hand, near the shock front, 

g cx 6(3 - q) - 4 +$(2 + 4) - [2(2 + 7) + (7 - lbll% (2.30) 

$ m 2(% - I)(3 - q) - eis(2 + q) - [27 - (7 - l)q]w. (2.31) 

(The above relations also hold for the cases with q = 0.) The blastwaves with q > 0 
can be classified into 5 characteristic types deoendine: on the values of q, w, and 7, -- - - 
and the ranges of w for each type are following: 
figure (a) 

figure (b) 

6 - 2q 

w < 27 + (7 - 1)q’ 

6 - 2q 6(3 - q) 7-l 4(2 + d -- 
27 + (7 - l)q -$+7)+(7-qq r+12(2+7)+(7-1)q’ 

figure (c) 

figure (d) 

6(3 - 4 7-l 4(2 + 4 -- 
2(2 + 7) + (7 - l)q 7 + 12(2 + 7) + (7 - l)n 

- < 2(27 I)(3 - - n) -- 7 47(2 q) 1 + 

27 - (7 - l)q 7 + 127 - (7 - l)q’ 
(2.34) 

2(27 - I)(3 - q) 7 - 1 47(2 + d 
- 27 - (7 - l)n w 3 y+12y - (7 - l)q < < 

and figure (e) 
3-q<w<5. 

<W 

- q9 (2.35) 

(2.36) 

Figure 1 shows the plots of the postshock flow for each characteristic type of the 
blastwaves with 7 = 5/3 and q = 1. Each plot is meant to illustrative of a range of 
values of w which yield similar results. 

(2.32) 

(2.33) 

It is well known that a region is subject to a convective motion if the entropy 
increases in the direction of gravity (see, for example, Landau and Lifshitz 1959). 
Denoting by S the entropy per unit mass, which is defined as 

Srln P 
( ) p ’ 

(2.37) 
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it can be seen from equation (2.20) that th e entropy increases or stays constant 
from the shock front toward the origin or the contact discontinuity provided 

6 - 2q 
ws 

27 + (7 - l)n’ 
(2.38) 

and decreases otherwise. On the other hand, even though we are neglecting gravity, 
the presence of a pressure gradient implies the flow is accelerated and gives rise to 
an effective gravity 

1 d$ 
&ff = -;z. (2.39) 

The postshock region around the contact discontinuity is decelerated (or accelerated 
in the direction of increasing entropy) provided 

w<3-q (2.40) 

(see equation (2.29)), and the postshock region behind the shock front is decelerated 
provided 

w < 2(27 - I)(3 - q) 7 - 1 47(2 + q) -- 
27 - (7 - l)n 7 + 127 - (7 - l)n 

(2.41) 

(see equation (2.31)). Hence, all or a portion of postshock region is subject to a 
convective motion if 

6 - 2q 

27 + (7 - lb? 
<W 

< maxI(3 _ q) 2(27 - I)(3 - d 7 - 1 47(2 + d -- 
’ 27-((Y--)q 7 + 127 - (7 - l)q” 

(2.42) 

In such region, the local strength of the convective motion may be estimated by the 
local growth rate given by Bandicra (1984), 

J 

dS 
== &?ff-& (2.43) 

From equations (2.18), (2.19), and (2.20), it can be seen that o2 approaches a 
constant near the origin in filled blastwaves, or if 

WC7-r q=o and 
-r+l’ 

(2.44) 

and g2 0: l/(r - rC) near the contact discontinuity in the hollow blastwaves, or if 

q>O or W>7-7 q=o and 
r+l’ 

(2.45) 

Hence, if convection occurs in the postshock flow, it is expected to be highly localized 
in hollow blastwaves but not in fJIed blastwaves. However, the question whether the 
blastwaves locally subject to a convective motion become dynamically unstable is a 
different problem, as discussed in §I. Since the shock interface stabilizes dynamicalIy 
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induced perturbations, we expect that only those blastwaves with a highly localized 
convective zone far from the shock interface, or with 

7-7 
y+l<w13 and q=o 

(2.46) 
or 

6 - 2q 

27 + (7 - 1)q 
<wIq-3 and Q> 0, 

are convcctively unstable. 

The accelerating contact discontinuity with 

w>3-q 

and the decelerating shock front with 

(2.47) 

w< 2(27-1)(3-q) 7-l 47(2+q) -- 
27 - (7 - l)n 7 + 127 - (7 - l)q 

have configurations subject to the Rayleigh-Taylor instability. However, again 
since the shock front tends to suppress the instability, we expect that only those 
blastwaves with the accelerating contact discontinuity arc subject to the Rayleigh- 
Taylor instability, i.e. only those blastwaves where the instability is localized near 
the contact discontinuity and far from the shock front. 

In the following sections, we will provide a proof of these arguments and find 
the relevant frequency spectra by performing a linear stability analysis. 

III. PERTURBATION EQUATIONS 

In this paper we will follow the notation used in Ryu and Vishniac (1987,1988) 
except that w and q have been added to the list of parameters. 

Let @,6?, and S$ be the normalized, perturbed variables defined in the Eulerian 
coordinates as 

&qT,O 4 q ~ P(~~f%d~t) - Po(TYt) 
I 1 , 

P8 
(3.1) 

&, *, @) ~ C(TI 09 At) - Q(T7 t)+ 
1 

vu 

(j$(T,s,d t) ~ P(T,ed>t) -Po(T*i) 
I 7 

P8 
where P,,, vO, and p, are the unperturbed fluid quantities considered in the previous 
section. Then, by linearizing the hydrodynamic conservation equations (2.1), (2.2), 
and (2.3) about the perturbed variables, we obtain the perturbation equations 

zg~,!!gt - zgw6i, +Gg + !gj + 23 + p+. 6?+- ZSG, = 0, (3.4) 



7+15-wtas; 7+13-w-q ~---__ 
2 a 2+q 2 2+q 

~~~~~-+~*~~i+~~~~+~~~~~ - 

-r-ll!+ = 0, 
2 >2a? (3.5) 

~~t~(~-7~)+t~(~-7~)+(~~-7~~)Et,=O, (3.6) 

where 5 is the normalized spatial derivative and &i, and 62~ are the radial and 
tangential components of the normalized perturbed velocity. 

Since the unperturbed flow is self-similar, we have seen in the previous section 
that the normaliecd, unperturbed fluid quantities 3, 5, and 6 depend only on a 
single, normalized, dimensionless radius +. Hence, we assume that the normalized, 
perturbed variables can be written in a self-similar form consisting of a term which 
depends only on the normalized radius, the usual expansion in spherical harmonics, 
and a power law in time: 

@(r, 8, At) = c @r,(q%z(4 4Y, (3.7) 
km 

6+, 6,d, t) = c [s&(+)yI,(B, d)t”+ + 6$-~&)fi&,#, d,t’] , (3.8) 
km 

-wT, 0,4,4 = c G+,(+LJ4 dJy, (3.9) 
4m 

where the operator 5~ is defined as 

+T E ;T$ f A-a& 
FsinB&$ 

(3.10) 

Here, s is the dimensionless perturbation growth rate. It depends on 1 and may 
be either real or a complex number. The first-order perturbation equations, which 
are the partial differential equations, are reduced to a set of ordinary differential 
equations: 

7+15-w 
---9 SF 

2. 2+q 1 
+ g + 2; 6i?,, - I(2 + l)+ = 0, 1 -1 
7+1- adSi% 

G--T p- 
> 

+y-ld6j 7-1ldF _ -- - 
2 d? 2 d? 

---6p 
2 pd? 

(3.11) 

7+13-w-q 7+15-w 

2+q 
+ T2+qs 1 FSii, = 0, (3.12) 
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7+13-w-q 
+ 

7+15-w 

2+q 
22fqa i=T 1 

+7-n - 
--+P = 0, (3.13) 

-7(~--~)~+(B-~~)~~+[-7~~+~~]p6ar 

+7[(6q2~);$2$~,]6p 

-[(i-~~)~~-~~d]~6~=o. (3.14) 

Here, we have dropped the subscript Em from 6plm, 6v,lm, 6VTlmr and 6pl,,, for 
clarity. Although we do not distinguish notationally between, say, 6>(r, O,qS, t) and 
b?(F), it is clear that the latter form is applied in the above equations. In deriving 
the equations (3.11) to (3.14), we have used the relations 

al52 2+qF86+ - = ---- 
at 5--wt a+ 

+ f62, (3.16) 

aa@ 
-= 
at (3.17) 

IV. BOUNDARY CONDITIONS 

a) Outer Boundary Conditiom 

The outer boundary conditions at the shock front for the perturbation equations 
(3.11) to (3.14) are derived from the requirement of the mass, momentum, and 
energy flux conservations across the shock front: 

[P%l = 0, (4.1) 

[P+P4] = 0, (4.2) 

[UT] = 0, (4.3) 

1 
iu2+ 7 p 
2 1 0 

3; = . (4.4) 

Here, uF is the fluid velocity relative to and perpendicular to the shock front and 
UT is the fluid velocity parallel to the shock front. The square brackets denote the 
difference in the enclosed quantities across the shock front. 
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Let qs be the perturbation in the position of the shock front, To, and fid be the 
normalized perturbation defined as 

ge, 4, t) E yy 

Following equations (3.7) to (3.10), we assume that ija can be written as: 

irl(R 44 4 = c h&n(4 4P”. 
Lm 

(4.6) 

Then, the equations (4.1) to (4.4) give the normalized boundary conditions at the 
shock front for the perturbation equations (3.11) to (3.14) 

6i,=-il,~-via+2(~a+l)i., (4.9) 

6?+ = -ij#, (4.10) 

where the subscript lm has been dropped for clarity. We have assumed that the 
ambient medium is unperturbed in deriving the above conditions. We will set ijd = 1 
for convenience. 

b) Inner Boundary Conditions 

The derivation of the inner boundary conditions is subtler than that of the outer 
boundary conditions. The physical arguments for the inner boundary conditions 
are different for filled and hollow blastwaves. The inner boundary conditions at the 
origin for filled blastwaves, i.e., for 

q=o and co<‘-7 
-r+l’ 

were considered in Ryu and Vishniac (1987). From the requirement that the fluid 
should not undergo divergent perturbations in the Lagrangian sense at the origin, 
or the fractional density change of the displaced volume element should go to zero 
at the origin, the boundary condition 

ap = 0 (4.12) 

is obtained. The same boundary condition is also obtained Tom the requirement 
that the energy perturbation should vanish at the origin. 
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The inner boundary conditions at the contact discontinuity for hollow blast- 
waves, lx, for 

q>o or q=o and 7-7 w>--, 
Y+l 

(4.13) 

were considered in Ryu and Vishniac (1988). They are derived from the requirement 
that there are no mass, momentum and energy fluxes across the contact disconti- 
nuity, or 

UT = 0 (4.14) 

at the contact discontinuity and 

LPI = 0 (4.15) 

across the contact discontinuity. Here, Us is the fluid velocity relative to and 
perpendicular to the contact discontinuity. Let Q be the perturbation in the 
position of the contact discontinuity, T=, and 7jC be the normalized perturbation 
defined as 

ge,l#+q E 9C(@$t). (4.16) 

Then, the above two equations give 

6~~+~& 

G+fi.$ = o. (4.18) 

In deriving the above conditions, it has been assumed that there is no perturbation 
inside the contact discontinuity, where a vacuum forms if q = 0 and w > (7-7)/(-y+ 
1) or the sound speed is so large to smooth out immediately all the perturbations 
if q > 0. In the case that dji/d? = 0 near the contact discontinuity, or for 

q=o 
6 

w<- 
-Y+1 

q>o 
6 - 2q 

w < 27 + (7 - l)q’ 

(4.19) 

the second condition becomes 
67, = 0 (4.20) 

which is completely sufficient as the inner boundary condition. In this case the 
other one may be used to compute $. However, in the case that dj/di: # 0 near 
the contact discontinuity, both conditions must be invoked to obtain a solution. 

V. NUMERICAL SOLUTIONS 

The first-order perturbation equations (3.11) to (3.14) with the outer boundary 
conditions (4.7) to (4.11) and the inner boundary conditions (4.12) or (4.17) and 



14 

(4.18) constitute eigenvalue equations for the eigenvalue s, which we have solved 
using the following iteration method. First, the derivatives of the normalized, 
perturbed variables with respect to the dimensionless radius have been calculated 
from the equations (3.11) to (3.14) 

where 63 is a vector with 
f 6i, \ 

and Aiis a 4 x 4 matrix whose elements are functions of p, G, Z;, dp/dF, diijd?, d@/d+, 
and 6. Second, for given values of q, w, y, and I, the eigenvalue .a has been estimated. 
Using the outer boundary conditions at the shock front, the above equation has 
been integrated numerically up to the origin or to the contact discontinuity. The 
integration has been carried out using the Runge-Kutta-Verner fifth-order and sixth- 
order method. In order to improve the accuracy around the origin or the contact 
discontinuity where some quantities diverge, i) lnp, Ins, or In? instead of ? has 
been used as the independent variable and ii) the unperturbed fluid quantities near 
the origin or the contact discontinuity have been replaced by the leading power-law 
solutions discussed in $11 when possible. Finally, the integrated perturbed quantities 
at the origin or at the contact discontinuity have checked against the inner boundary 
conditions. If they have not satisfied the inner boundary conditions, s has been 
modified to a better value s + As by the formula 

As = - 
6G-$($9-‘6~+~(~s+I) ($$)-‘65 

3 + 1) ($)-‘2 + qe ($)-‘Sj’ 
15.4) 

Here, a6$/as and 86&/as have been calculated from 
\ I 

d a65 aA -- = aa; 
di: 8s z.6&;l.as. 

The iteration has been continued until lAs1 5 10e4, and the resulting s has been 
taken as the eigenvalue for given q, w, y, and 2. Typically, s converges in 3 or 4 
iterations. 

In the stability analysis, the blastwaves with q = 0 can be classified into 4 
characteristic types, as discussed in 311 ( re er, f f or instance, equations (2.38), (2.40), 
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(2.44), and (2.45)). The ranges of w for which each type applies are given below: 

type (4 

3 
w<- and 

7 
4 = 0, (5.6) 

type (b) 

and 4 = 0, 

type (c) 
7-r 
y+l<w13 and (I = 0, 

(5.7) 

(5.6) 

type (4 
w>3 and q = 0. (5.9) 

The plots of the resulting frequency spectra for each characteristic type of blastwaves 
with 7 = 4/3 are shown in Figure 2. Each plot is meant to illustrative of a range 
in w which yields similar results. 

The blastwaves with q > 0 can be classified into 3 characteristic types, and the 
ranges of w for which each type applies are given below: 

type (4 

wl 
6 - 2q 

27 + (-Y - l)n’ 

type (b) 
6 - 2q 

27 + (7 - l)n 
<w<q-3, (5.11) 

w>q-3. (5.12) 

The plots of the resulting frequency spectra for each characteristic type of blastwaves 
with 7 = 5/3 and q = 1 are shown in Figure 3. Figure 3b actually corresponds to the 
shock wave structure given in Figure lc, but the frequency spectra corresponding 
to perturbations of Figures lb and Id are only slightly different. Consequently, we 
have omitted the corresponding plots and allowed the remaining figure to stand for 
all three cases. 

The frequency spectra of the Slled decelerating blastwaves in Figures 2a and 
3a are the same frequency spectra as those in Ryu and Vishniac (1987 and 1988) 
and have been reproduced here for completeness. Such blastwaves are unstable to 
growing oscillatory modes only when the thickness of the shell behind the shock 
front is sufficiently thin, or for 7 sufficiently close to one. 

Blastwaves with w in the range given in (5.7) are apparently subject to a 
convective motion but have a convective region extending from the origin up to the 
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shock front. The corresponding frequency spectra, such as Figure 2b, indicate that 
such blastwaves are actually stable against convection because the shock interface 
stabilizes the dynamically induced perturbations. On the other hand, blastwaves 
with w in the ranges given in (5.8) and (5.11) have a convective region highly 
localized around the contact discontinuity. The corresponding frequency spectra, 
such as Figures 2c and 3b, indicate that such blastwaves are unstable against the 
convective instability. In the blastwaves subject to conve&ion, the sound wave 
modes at long wavelengths bifurcate progressively into growing modes and decaying 
modes. The first mode to split, which we call the primary mode, is also the mode 
which becomes unstable first. The modes which split at higher 1, which we csll the 
higher harmonic modes, become unstable at progressively shorter wavelengths. The 
primary mode is always the most unstable mode. The bifurcating wavelength, kb 
at which a given mode splits (s becomes real), and the critical wavenumber, kc, at 
which a given mode becomes unstable (a becomes positive), depend on the pressure 
and density distributions in the postshock shell. The detailed dependence of kb 
and kc on the internal structure will not be given here, but will be investigated 
in the subsequent paper (Ryu 1990). I n order for the convective instability to be 
effective, the pressure gradient should be large (see Figure 3b). However, the region 
initially subject to convection may become less convective as the instability grows, 
since effect of convection will be to reduce the gradient of the entropy. Clearly, 
the detailed nonlinear evolution of the convective instability in shocks should be 
investigated by high-resolution, three-dimensional numerical simulations. 

The accelerating contact discontinuity in blastwaves with w > 3 - q is unstable 
against the Rayleigh-Taylor mode over all wavelengths. Figures 2d and 3c show the 
trequency spectra of a growing mode, which is the only non-oscillatory mode we can 
identify. Of course, it is expected that there are an infinite number of oscillatory 
modes corresponding to sound waves propagating throughout the postshock region. 
However, blastwaves with w > 3 -q are generally stable against such modes over all 
wavelengths. We have actually identified several such modes but the real part of s 
of such modes is always negative. In the subsequent paper (Ryu 1990), we will show 
that, for perturbations with wavelengths smaller than the thickness of the shell, the 
growth rate of the Rayleigh-Taylor instability is given by 

r-q&, (5.13) 

where g is the effective gravity exerted on the shell, 

Figure 4 shows the postshock flow of the Primakoff blastwave with 7 = 5/3, 
q = 0, and w = 2 and its frequency spectra. This is particularly interesting case, 
since this corresponds to a supernova explosion in a preexisting supersonic stellar 
wind. Bernstein and Book (1980) considered the the stability of the Primakoff 
blastwave and showed that it is stable against perturbations on all wavelengths. 
However, GaEet (1984a,b) argued that Bernstein and Book had neglected the en- 
tropy perturbations and concluded the Primakoff blastwave can be proved to be 
stable only against radial modes. Our analysis shows that the Primakoff blastwave 
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is stable also against nonradial, normal modes, even though it is formally subject 
to a convective motion. 

Figure 5 shows the distributions of the perturbed fluid quantities 6p, 6i+, 6@, 
and 65~ of blastwaves which are unstable against the convective instability or the 
Rayleigh-Taylor instability. The perturbation wavelength corresponds to 

x 2x -=- 
7s 1 (5.14) 

= 0.628, 

which is larger than the thickness of the shells. In both cases, the perturbations are 
highly localized around the contact discontinuity. 

VI. MIXING IN SUPERNOVA ENVELOPES 

The advent of Supernova 1987A in the Large Magellanic Cloud provided the 
direct observational evidence that hydrodynamic processes may play an important 
role in the early stage of a supernova explosion. A large scale mixing of the 
ejecta were suggested from the following observations: i) Both x-ray and r-ray 
were discovered earlier than expected (see, e.g. , Sunyaev et al. 1987; Dotani et 
al. 1987; Mats et al. 1988). ii) After a rapid initial decline, the bolometric light 
curve increased very slowly and then reached a plateau-like maximum (see, eg. , 
Catchpole et al. 1987). iii) Broad lines with FWHM v N 2000 - 3000km s-l of 
Fe II, Ni II, Ar II, and Co II were observed in late 1987 and early 1988 (see, e.g. 

Erickson et al. 1988; Rank et al. 1988; Witteborn et al. 1989). Several possible 
mechanisms for mixing were suggested (see Amett, Fryxell, and Miiller 1989 for 
more discussion and references), and among them some hydrodynamic instability 
has been considered the most probable solution. 

Miiller et al. (1989) considered the stability of blastwave produced by a point 
explosion in a n = 3 polytrope and applied the stability analysis of an incomprea+ 
ible fluid confined between two rigid boundaries discussed in Chandrasekhar (1961). 
They concluded that the initial perturbations in their model do not grow signifi- 
cantly in the shock propagation time scale. However, Ebisuzaki, Shigeyama, and 
Nomoto (1989), and Benz and Thielemann (1990) considered the stability of blast- 
wave propagating through a realistic progenitor star and applied a local stability 
analysis based on the Rayleigh-Taylor criterion of an incompressible fluid (Ebisuzaki, 
Shigeyama, and Nomoto) and the Schwarzscbild criterion of a compressible fluid 
(Benz and Thielemann). Both groups concluded that the two composition inter- 
faces between the hydrogen-rich and helium zones and the helium and metal zones 
are eztremely unstable. However, as mentioned in 311, an analysis of the dynamic 
instability of blastwaves should include the overall dynamics, the boundary condi- 
tions, and the local background structure. Therefore, estimates of the growth rate 
of the perturbations based on local criteria may be misleading. 
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On the other hand, Nagasawa, Nakamura, and Miyama (1988) performed nu- 
merical simulations of supernova explosions in n = 3 and n = 1.5 polytropic stars 
using a three-dimensional smoothed particle hydrodynamic (SPH) code and found 
the formation of clumpy structures produced by a compressible Rayleigh-Taylor in- 
stability. In more accurate numerical simulations using a hydrodynamic code based 
on the piecewise parabolic method (PPM), A mett, Fryxell, and Miiller (1989) con- 
sidered a supernova explosion in a realistic progenitor star with A4 = 15& by 
Amett (1987). They found that the metal/He interface is strongly unstable against 
the Rayleigh-Taylor instability and heavier metals penetrate into the He sane. On 
the other hand, they found that the He/H interface stays relatively stable. 

We have applied the results of §V to a blastwave propagating through the su- 
pernova envelope. The metal/He and He/H interfaces in Ebisusaki, Shigeyama, and 
Nomoto (1989) (see their Figures 1 and 2) form contact discontinuities with large 
density jumps and appear subject to the Rayleigh-Taylor instability, as suggested 
by Chevalier (1976). As a result, they are expected to be strongly unstable over 
all wavelengths. However, different models for the supernova progenitor may result 
in composition interfaces which are stable against the Rayleigh-Taylor instability. 
The stability of the composition interfaces may be tested by 

H=Jdexp[Re(@)]dt’. (6.1) 

The growth time scale of the perturbations is comparable to the dynamical time 
scale of the contact discontinuity for perturbation wavelengths comparable to the 
thickness of the unstable zone, (at least in the linear regime). Consequently, the long 
wavelength perturbations will grow about as fast as the supernova explosion evolves. 
According to the linear stability analysis, perturbations with smaller wavelengths 
grow faster. However, perturbations with wavelengths smaller than the thickness 
of the unstable zone are expected to be strongly localized around the composition 
interfaces. This should prevent them from dominating the long wavelength pertur- 
bations. We conclude that the modes that most effectively promote mixing will be 
the long wavelength modes, i.e. those with wavelengths comparable to the local 
pressure scale height. On the other hand, the regions between the two composi- 
tion interfaces and the shock front are expected to be only tveakly, OT not, unstable 
against the convective motions. This is because the small pressure gradient in both 
regions makes the convective instability ineffective compared to the Rayleigh-Taylor 
instability of the composition interfaces, and also because convective motions in the 
region between the He/H interface and the shock front will become stabilized if they 
extend to the shock front. 

VII. PLANETARY NEBULAE 

In the case of a stellar wind driving a shock into its surroundings, it is necessary 
to take 9 1 1. For planetary nebulae the standard model is that the bright shell 



19 

of ionized material represents a shock being driven into gas which originates from 
an earlier, and gentler, stellar wind emitted by the same star. When the shock 
emerges from this neutral material the shock wave will expand rapidly into the low 
density interstellar medium and the nebula will eventually become less conspicuous. 
At earlier times the shock will encounter a density gradient that depends on the 
history of mass loss from the central star. In general, we have w > 2, the value we 
would have for a steady mass loss at a constant velocity, 

In an earlier paper Breitschwerdt and Kahn (1990) have pointed out that under 
certain reasonable assumptions concerning the evolution of a planetary nebula and 
its central star the nebula will be subject to the Rayleigh-Taylor instability. They 
pointed out that this may explain the small scale features seen in most planetary 
nebulae. This result is consistent with the work we have presented here, but we 
wish to make a more general point as well. Taking q 2 1 and w > 2 we see 
immediately from equation (2.48) that we are always in the regime where the 
contact discontinuity is accelerating and the dense shell is subject to Rayleigh- 
Taylor instabilities. In particular, we see that this result does not depend on 
the value of y in the dense shell (or equivalently, on the importance of radiative 
cooling). In other words, regardless of the exact model one uses for the evolution 
for planetary nebulae, the implication of this paper is that small scale instabilities 
and mixing will necessarily be part of their evolution. Whether this results in large 
scale features depends on whether or not there are other stabilizing influences at 
work. For example, a sufficiently intense ionizing flux may stabilize large amplitude 
ripples in the inner boundary by evaporating lagging dense regions, an effect which 
is beyond the scope of this paper. 

We would like to thank Roger A. Chevalier and Hyesung Kang for comments 
on manuscripts. The calculations were carried out using facilities of the Minnesota 
Supercomputer Institute and Fermilab. DR thanks the Minnesota Supercomputer 
Institute for the hospitality, where some of this work was done. The work of DR was 
supported in part by the DOE and by NASA at Fermilab through grant NAGW- 
1340. 

Note - During the completion of this paper, we received a preprint from 
J. Goodman. He considered the stability of the blastwaves with Q = 0 and 
(7 - 7)/(7 + 1) < w < 3. We found that his results agree with ours for that 
particular case. 
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FIGURE CAPTIONS 

Fig. l.- The characteristic types of the postshock flow of the blastwaves with 
7 = 5/3 and q = 1. The ranges of w for which each particular type applies are 
given in the text. 

Fig. 2.- The characteristic types of the frequency spectra of the blastwaves with 
y = 4/3 and q = 0. (a) The bl as wave with w = 0 which is subject to an t 
oscillatory instability but stable against the dynamically induced perturbations. 
(b) The blastwave with w = 2.3 which is subject to a convective motion but 
stable against the dynamically induced perturbations. (c) The blastwave with 
w = 2.7 which is subject to a convective motion and unstable against the 
dynamically induced perturbations. (d) The blastwave with w = 3.2 which is 
subject to a Rayleigh-Taylor instability and unstable against the dynamically 
induced perturbations. The solid lines show the real eigenvalues s and the 
dashed lines show the real parts of the complex eigenvalues s. In (b) and (c), 
at the points where two solid lines meet, a dashed line starts and extends up 
to I = 1. Some dashed lines are omitted for the clarity. 

Fig. 3.- The characteristic types of the frequency spectra of the blastwaves with 
y = 5/3 and Q = 1. (a) The blastwave with w = 0 which is subject to an oscilla- 
tory instability but stable against the dynamically induced perturbations. (b) 
The blastwave with w = 1.4 which is subject to a convective motion and un- 
stable against the dynamically induced perturbations. (c) The blastwave with 
w = 2.5 which is subject to a Rayleigh-Taylor instability and unstable against 
the dynamically induced perturbations. The solid lines show the real eigen- 
values s and the dashed lines show the real parts of the complex eigenvalues 
s. 

Fig. 4.- The Primakoff blastwave with 7 = 5/3, p = 0, and w = 2 (a) and 
its frequency spectra (b). The P rimakoff blastwave is subject to a convective 
motion but stable against the dynamically induced perturbations. The solid 
lines show the real eigenvalues s and the dashed lines show the real parts of 
the complex eigenvalues s. In (b), at the points where two solid lines meet, a 
dashed line starts and extends up to I = 1. Some dashed lines are omitted for 
the clarity. 

Fig. 5.-The perturbations of the postshock flow. (a) The blastwave withy = 4/3, 
12 = 0, and w = 2.7, which is convectively unstable, for 1 = 10 and s = 0.239. 
(b) The blastwave with 7 = 4/3, p = 0, and w = 3.2, which is Rayleigh-Taylor 
unstable, for 1 = 10 and s = 0.713. 
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